TextSynth Server

Version: 2024-01-20

Table of Contents

1 Introduction

2 Quick Start

2.l LUK . oottt e
2.1 1 First SEePS . oo e
2.1.2 GPU USAEE -« oottt

2.2 WINAOWS .« oottt e e e
2.2, ISt SU DS o ottt
22,2 GPU USAZE . . oot

3 UtIlties . ..o

3.1 Text processing (TS_teST) .ottt e
3. 1.1 Text generationt e
3.1.2 Translationo
3.1.3 Short text compression and decompression.c.eeeiieeeeniiiiiiina...
3.1.4 Perplexity computation ...

3.2 Text t0 ImMAZe (TS_SA) « .ttt ettt

3.3 Chat (BS_Chat) ...ttt

3.4 Speech to text transcription (ts_audiototext)...........ciiiiiiiiiiiiiiiiiiii....

3.5 Text compression (TS_ziP)......c.ouinininini i

3.6 Model Weight Conversiont

3.7 Model Weight Quantization............ ..o

4 TS Server Configuration.......................................

Al Sy AK . oot
4.2 Configuration parametersttt
4.3 JSON endpointsot e

1 Introduction

TextSynth Server is a web server proposing a REST API to large language models. They can
be used for example for text completion, question answering, classification, chat, translation,
image generation, ...

It has the following characteristics:

All is included in a single binary. Very few external dependencies (Python is not needed)
so installation is easy on Linux and Windows.

Supports many Transformer variants (GPT-J, GPT-NeoX, OPT, Fairseq GPT, M2M100,
CodeGen, GPT2, T5, RWKYV, Llama 2, Falcon, MPT, Mistral, Whisper) and Stable Diffu-

sion.

Integrated REST JSON API for text completion, translation, image generation and audio
transcription.

Integrated HTML GUI for testing.

Very high performance for small and large batches on CPU and GPU. Support of dynamic
batching to handle a large number of simultaneous requests.

Efficient custom 8, 4 and 3 bit quantization.

Larger models work optimally on lower cost GPUs (e.g. RTX 3090, RTX A6000) thanks to
efficient quantization.

Support of speculative sampling for even faster inference.

Support of grammar based sampling to constraint the model output according to a BNF
grammar or a JSON schema.

Uses the LibNC library for simple tensor manipulation using the C language.

Simple command line tools (ts_test, ts_sd, ts_chat, ts_audiototext and ts_zip) are
provided to test the various models.

The free version is available only for non commercial use. Commercial organizations must

buy the commercial version. The commercial version adds the following features:

High performance handling of simultaneous requests.
Memory usage limitation.

Multiple models can be served at the same time.
SSL/TLS requests.

2 Quick Start

2.1 Linux

2.1.1 First steps

The TextSynth Server works only on x86 CPUs supporting AVX2 (all Intel CPUs since 2013
support it). The installation was tested on Fedora and CentOS/RockyLinux 8 distributions.
Other distributions should work provided the 1ibjpeg and libmicrohttpd libraries are installed.

1.

Install the 1ibjpeg and libmicrohttpd libraries. If you use Fedora, RHEL, CentOS or
RockyLinux, you can type as root:

dnf install libjpeg libmicrohttpd

ts_test can be used without these libraries. ts_sd needs libjpeg. ts_server needs
libjpeg and libmicrohttpd. Audio transcription requires the FFmpeg executable in order
to convert the input audio file.

Extract the archive and go into its directory:

tar xtf ts_server-##version##.tar.gz

cd ts_server-##version##
when ##version## is the version of the program.

Download one small example model such as gpt2_117M.bin from the ts_server web page.

. Use it to generate text with the "ts_test" utility:

./ts_test -m gpt2-117M.bin g "The Linux kernel is"

The -T option can be used to use more or less CPU cores (the default is the number of
physical cores).

Start the server:

./ts_server ts_server.cfg
You can edit the ts_server.cfg JSON configuration file if you want to use another model.
Try one request:

curl http://localhost:8080/vl/engines/gpt2_117M/completions \
-H "Content-Type: application/json" \
-d ’{"prompt": "The Linux kernel is", "max_tokens": 100}’

The full request syntax is documented at https://textsynth.com/documentation.html.
You can use the integrated GUI by exploring with your browser:
http://localhost:8080

Now you are ready to load a larger model and to use it from your application.

2.1.2 GPU usage

You need an Nvidia Ampere, ADA or Hopper GPU (e.g. RTX 3090, RTX 4090, RTX A6000,
A100 or H100) in order to use the server with cuda 11.x or 12.x installed. Enough memory must
be available to load the model.

1.
2.

First ensure that it is working on CPU (See [First steps|, page 2).

Ensure that you have a compatible cuda installation with cuda 11.x or 12.x. The software
is preconfigured with cuda 11.x. If you want to use cuda 12.x, then change the link to the
libnc_cuda.so library:

1n -sf libnc_cuda-12.so libnc_cuda.so

https://textsynth.com/documentation.html

Chapter 2: Quick Start 3

3. Then try to use the GPU with the ts_test utility:
./ts_test --cuda -m gpt2-117M.bin g "The Linux kernel is"
If you get an error such as:
Could not load: ./libnc_cuda.so

it means that cuda is not properly installed or that there is a mismatch between the installed
cuda version and the one ts_server was compiled with. You can use:

1dd ./libnc_cuda.so
to check that all the required cuda libraries are present on your system.
4. Then edit the ts_server.cfg configuration to enable GPU support by uncommenting
cuda: true
and run the server:
./ts_server ts_server.cfg
5. Assuming you have curl, Try one request:

curl http://localhost:8080/v1/engines/gpt2_117M/completions \
-H "Content-Type: application/json" \
-d ’{"prompt": "The Linux kernel is", "max_tokens": 100}’
6. You can use the integrated GUI by exploring with your browser:
http://localhost:8080

7. Depending on the amount of memory available on your GPU, you can set the memory
parameter in ts_server.cfg to limit the amount of memory used by the server. It is
usually necessary to use a few gigabytes less that maximum available amount of GPU
memory.

2.2 Windows

2.2.1 First steps
The TextSynth Server works only on x86 CPUs supporting AVX2 (all Intel CPUs since 2013
support it).
1. Extract the ZIP archive, launch the shell and go into its directory:
cd ts_server-##version##
when ##version## is the version of the program.
2. Download one small example model such as gpt2_117M.bin from the ts_server web page.
3. Use it to generate text with the "ts_test" utility:
ts_test -m gpt2-117M.bin g "The Linux kernel is"

The -T option can be used to use more or less CPU cores (the default is the number of
physical cores).

4. Start the server:
ts_server ts_server.cfg
You can edit the ts_server.cfg JSON configuration file if you want to use another model.

5. Assuming you installed curl (you can download it from https://curl.se/windows/), try
one request:
curl http://localhost:8080/vl/engines/gpt2_117M/completions \
-H "Content-Type: application/json" \
-d ’{"prompt": "The Linux kernel is", "max_tokens": 100}’

The full request syntax is documented at https://textsynth.com/documentation.html.

https://curl.se/windows/
https://textsynth.com/documentation.html

Chapter 2: Quick Start 4

6. You can use the integrated GUI by exploring with your browser:

http://localhost:8080

Now you are ready to load a larger model and to use it from your application.

2.2.2 GPU usage

You need an Nvidia Ampere, ADA or Hopper GPU (e.g. RTX 3090, RTX 4090, RTX A6000,
A100 or H100) in order to use the server with cuda 11.x or 12.x installed. Enough memory must
be available to load the model.

1.
2.

First ensure that it is working on CPU (see the previous section).

Ensure that you have a compatible cuda installation with cuda 11.x or 12.x. The software
automatically detects the cuda version.

Then try to use the GPU with the ts_test utility:
./ts_test --cuda -m gpt2-117M.bin g "The Linux kernel is"
If you get an error such as:
Could not load: libnc_cuda-12.d11l (error=126)
it means that cuda is not properly installed.
Then edit the ts_server.cfg configuration to enable GPU support by uncommenting
cuda: true
and run the server:
./ts_server ts_server.cfg
Assuming you have curl, Try one request:
curl http://localhost:8080/vl/engines/gpt2_117M/completions \
-H "Content-Type: application/json" \
-d ’{"prompt": "The Linux kernel is", "max_tokens": 100}’
You can use the integrated GUI by exploring with your browser:
http://localhost:8080
Depending on the amount of memory available on your GPU, you can set the memory
parameter in ts_server.cfg to limit the amount of memory used by the server. It is
usually necessary to use a few gigabytes less that maximum available amount of GPU
memory.

3 Utilities

3.1 Text processing (ts_test)

3.1.1 Text generation
./ts_test --cuda -m gpt2_117M.bin g "Hello, my name is"

When using a CPU, remove the --cuda option.

3.1.2 Translation

./ts_test --cuda -m m2m100_1_2B_qg8.bin translate en fr "The dispute \
focuses on the width of seats provided on long-haul flights for \
economy passengers."

assuming you downloaded the m2m100_1_2B_g8.bin model.

3.1.3 Short text compression and decompression

./ts_test --cuda -m gpt2_117M.bin cs "Hello, how are you 7"

./ts_test --cuda ds "##msg##"

where ##msg## is the compressed message.

3.1.4 Perplexity computation

The perplexity over a text file can be used to evaluate models. The text file is first tokenized,
then cut in sequences of tokens. The default sequence length is the maximum context length of
the model, use the -1 option to change it. Then the log probabilities are averaged over a range
of context positions and displayed as perplexity.

./ts_test --cuda -m mistral_7B.bin perplexity wiki.test.raw
ctx_len=8192, n_seq=40
START END PERPLEXITY

0 256 9.746
2566 512 5.758
512 1024 5.072

1024 2048 4.984
2048 4096 4.934
4096 8192 4.689

0 8192 4.952

The 11ama_perplexity command evaluates the perplexity using the same algorithm as the
perplexity utility in 1lama.cpp so that comparisons can be made. The default context length
is 512.

./ts_test --cuda -m mistral_7B.bin llama_perplexity wiki.test.raw
ctx_len=512, start=256, n_seq=642
#SEQ PERPLEXITY

641 5.6946

3.2 Text to image (ts_sd)

./ts_sd --cuda -m sd_v1.4.bin -o out.jpg "an astronaut riding a horse"
assuming you downloaded sd_v1.4.bin.

When using a CPU, remove the --cuda option.

Chapter 3: Utilities 6

3.3 Chat (ts_chat)
./ts_chat --cuda -m llama2_7B_chat_qg4.bin

assuming you downloaded 1lama2_7B_chat_qg4.bin.
When using a CPU, remove the --cuda option.

During the chat, some commands are available. Use /h during the chat to have some help.
Type Ctrl-C once to stop the output and twice to quit.

3.4 Speech to text transcription (ts_audiototext)

./ts_audiototext --cuda -m whisper_large_v3_g8.bin -o out.json audiofile.mp3

assuming you downloaded whisper_large_v3_qg8.bin and that audiofile.mp3 is the audio
file to be transcripted. out.json contains the transcripted text.

When using a CPU, remove the --cuda option.

3.5 Text compression (ts_zip)
To compress a text file (here alice29.txt), assuming you downloaded the rwkv_169M.bin
model, use:
./ts_zip --cuda -m rwkv_169M.bin c alice29.txt /tmp/out.bin
To decompress it:
./ts_zip --cuda -m rwkv_169M.bin d /tmp/out.bin /tmp/out.txt

A checksum is included in the compressed file and it is automatically checked. It is essen-
tial to use the same software version, language model and GPU model when compressing and
decompressing a file.

Large compression gains occur only if the input file is in a language that the language model
has already seen.

The compression ratio, speed and memory usage depend on the language model but also
on the selected context length (-1 option) and batch size (-b option). They are both chosen
automatically but can be overridden:

e The memory usage is proportional to the context length and batch size.
e The speed increases when the batch size increases.

e The compression ratio increases with larger context lengths and smaller batch sizes.

More information is available at https://bellard.org/ts_server/ts_zip.html.

3.6 Model Weight Conversion

TextSynth Server uses a specific file format to store the weights of the models. Python scripts
are provided in scripts/ to convert model checkpoints to the TextSynth format. The tokenizer
is now included in the model file. For backward compatibility, tokenizer files are provided in the
tokenizer/ directory.

The script hf_model_convert.py should be used when converting from a Hugging Face
model.

Example to convert Llama2 weights from Hugging Face to TextSynth:
python hf_model_convert.py --tokenizer llama_vocab.txt model_dir llama2.bin
where:
e model_dir is the directory containing the config.json and pytorch_model*.bin files.

e llama_vocab.txt is a ts_server tokenizer file from the tokenizer/ directory.

https://bellard.org/ts_server/ts_zip.html

Chapter 3: Utilities 7

3.7 Model Weight Quantization

With the ncconvert utility, it is possible to quantize the model weights to 8, 4 or 3 bits. Quan-
tization reduces the GPU memory usage and increases the inference speed. 8 bit quantization
yields a negligible loss. 4 bit quantization yields a very small loss. 3 bit quantization currently
only works on a GPU.

Examples:
8 bit quantization:

./ncconvert -q bf8 pythia_deduped_160M.bin pythia_deduped_160M_g8.bin
4 bit quantization:

./ncconvert -q bf4 pythia_deduped_160M.bin pythia_deduped_160M_g4.bin

4 TS Server Configuration
The file ts_server.cfg provides an example of configuration.

4.1 Syntax

The syntax is similar to JSON with a few modifications:
e property names can be unquoted
{ property: 1 %}

e Multi-line and single line C style comments are accepted

4.2 Configuration parameters

cuda Optional boolean (default = false). If true, CUDA (Nvidia GPU support) is enabled.

device_index
Optional integer (default = 0). Select the GPU device when using several GPUs.
Use the nvidia-smi utility to list the available devices.

n_threads
Optional integer. When using a CPU, select the number of threads. It is set by
default to the number of physical cores.

full_memory
Optional boolean (default = true). When using a GPU, ts_server reserves by
default all the GPU memory for better efficiency. This parameter disables this
behavior so that the GPU memory is allocated on demand.

max_memory
Optional integer (default = 0). If non zero, limit the consumed GPU memory to
this value by pausing the HT'TP requests until there is enough memory.

Since there is some overhead when handling the requests, it is better to set a value
a few GB lower than the amount of total GPU memory.

kv_cache_max_count
Optional integer (default = 0). See the kv_cache_size parameter.

kv_cache_size
Optional integer (default = 0). The KV cache is stored in CPU memory and is only
used by the chat endpoint to store the context of the conversation to accelerate
the inference. It is disabled by default. kv_cache_size sets the maximum KV
cache memory in bytes. kv_cache_max_count sets the maximum number of cached
conversations.

models Array of objects. Each element defines a model that is served. The following
parameters are defined:

name String. Name (ID) of the model in the HTTP requests.

filename String. Filename of the model. You can use the conversion scripts to
create one from Pytorch checkpoints if necessary.

draft_model
Optional string. Filename of a smaller model used to accelerate in-
ference (speculative sampling). The draft model must use the same
tokenizer as the large model.

Chapter 4: TS Server Configuration 9

sps_k_max
Optional integer. When using speculative sampling, specify the max-
imum number of tokens that is predicted by the draft model. The
optimal value needs to be determined by experimentation. It is usually
3 or 4.

Note: the free version only accepts one model definition.

local_port
Integer. TCP port on which the HTTP server listens to.

bind_addr
Optional string (default = "0.0.0.0"). Set the IP address on which the server listens
to. Use "127.0.0.1" if you want to accept local connections only.

tls Optional boolean (default = false). If true, HT'TPS (TLS) connections are accepted
instead of HTTP ones.

tls_cert_file
Optional string. If TLS is enabled, the certificate (PEM format) must be provided
with this parameter.

tls_cert_file
Optional string. If TLS is enabled, the private key of the certificate (PEM format)
must be provided with this parameter.

log_start
Optional boolean (default = false). Print "Started." on the console when the server
has loaded all the models and is ready to accept connections.

gui Optional boolean (default = false). If true, enable a Graphical User Inter-
face in addition to the remote API. It is available at the root URL, e.g.
http://127.0.0.1:8080. The server just serves the files present in the gui/
directory. You can modify or add new files if needed.

log_filename
String. Set the filename where the logs are written. There is one line per connection.
The fields are:

e date and time (ISO format)
e source IP address
e HTTP method
e URI
e posted JSON
from_proxy
Optional boolean (default = true). If true, use the X-Forwarded-For header if

available to determine the source IP address in the logs. It is useful to have the real
IP address of a client when a proxy is used.

4.3 JSON endpoints

The server provides the following endpoints.
vl/engines/{model_id}/completions
Text completion.
Complete documentation at https://textsynth.com/documentation.html.

See api_examples/completion.py to have an example in Python.

https://textsynth.com/documentation.html

Chapter 4: TS Server Configuration 10

vl/engines/{model_id}/chat
Chat based completion. Complete documentation at https://textsynth.com/
documentation.html.

vl/engines/{model_id}/translate

Translation.

Complete documentation at https://textsynth.com/documentation.html.

See api_examples/translate.py to have an example in Python.
vl/engines/{model_id}/logprob

Log probability computation.

Complete documentation at https://textsynth.com/documentation.html.
vl/engines/{model_id}/tokenize

Tokenization.

Complete documentation at https://textsynth.com/documentation.html.
vl/engines/{model_id}/text_to_image

Text to image.

Complete documentation at https://textsynth.com/documentation.html.

See api_examples/sd.py to have an example in Python.
vl/engines/{model_id}/transcript

Speech to text transcription. See api_examples/transcript.py to have an exam-
ple in Python.

The content type of the posted data should be multipart/form-data and should
contain two files with the following names:

json contains the JSON request.

file contains the audio file to transcript. FFmpeg is invoked by ts_server
to convert the audio file to raw samples.

The JSON request contains the following properties:

language String. The input ISO language code. The following languages are
available: af, am, ar, as, az, ba, be, bg, bn, bo, br, bs, ca, cs, cy, da,
de, el, en, es, et, eu, fa, fi, fo, fr, gl, gu, ha, haw, he, hi, hr, ht, hu, hy,
id, is, it, ja, jw, ka, kk, km, kn, ko, la, lb, In, lo, 1t, lv, mg, mi, mk, ml,
mn, mr, ms, mt, my, ne, nl, nn, no, oc, pa, pl, ps, pt, ro, ru, sa, sd, si,
sk, sl, sn, so, sq, sr, su, sv, sw, ta, te, tg, th, tk, tl, tr, tt, uk, ur, uz, vi,
yi, yo, yue, zh.

Additional parameters are available for testing or tuning:

num_beams
Optional integer, range: 2 to 5 (default = 5). Number of beams used
for decoding.

condition_on_previous_text
Optional boolean (default = false). Condition the current frame on the
previous text.

logprob_threshold
Option float (default = -1.0).

no_speech_threshold
Optional float (default = 0.6). Probability threshold of the no_speech
token for no speech detection. The average log-probability of the gen-
erated tokens must also be below logprob_threshold.

https://textsynth.com/documentation.html
https://textsynth.com/documentation.html
https://textsynth.com/documentation.html
https://textsynth.com/documentation.html
https://textsynth.com/documentation.html
https://textsynth.com/documentation.html

Chapter 4: TS Server Configuration 11

v1/memory_

v1/models

A JSON object is returned containing the transcription. It contains the following
properties:

text String. Transcripted text.

segments Array of objects containing the transcripted text segments with time-
stamps. Each segment has the following properties:

id Integer. Segment ID.

start Float. Start time in seconds.

end Float. End time in seconds.

text String. Transcripted text for this segment.

language String. ISO language code.
duration Float. Transcription duration in seconds.

stats
Return a JSON object with the memory usage statistics. The following properties
are available:

cur_memory
Integer. Current used memory in bytes (CPU or GPU memory).

max_memory
Integer. Maximum used memory in bytes since the last call (CPU or
GPU memory).

kv_cache_count
Integer. Number of entries in the KV cache count.

kv_cache_size
Integer. CPU Memory in bytes used by the KV cache.

Return the list of available models and their capabilities. It is used by the GUI.

	Introduction
	Quick Start
	Linux
	First steps
	GPU usage

	Windows
	First steps
	GPU usage

	Utilities
	Text processing (ts_test)
	Text generation
	Translation
	Short text compression and decompression
	Perplexity computation

	Text to image (ts_sd)
	Chat (ts_chat)
	Speech to text transcription (ts_audiototext)
	Text compression (ts_zip)
	Model Weight Conversion
	Model Weight Quantization

	TS Server Configuration
	Syntax
	Configuration parameters
	JSON endpoints

