
Lossless Data Compression with Neural Networks

Fabrice Bellard

March 30, 2019

Abstract

We describe our implementation of a lossless data compressor using neu-
ral networks. We tuned Long Short-Term Memory and Transformer based
models in order to achieve a fast training convergence. We evaluated the
performance on the widely used enwik8 Hutter Prize benchmark.

1 Introduction

Although the best lossless data compressors are based on neural network models
[7], they use them mostly to mix the statistics from a large number of hand coded
models. Here we present lossless data compressors using pure neural network
models based on Long Short-Term Memory (LSTM) and Transformer models.

The lossless data compressor employs the traditional predictive approach: at
each time t, the encoder uses the neural network model to compute the probability
vector p of the next symbol value st knowing all the preceding symbols s0 up to
st−1. The actual symbol value st is encoded using an arithmetic encoder with
approximately − log2(pst) bits. Then the model is updated knowing the symbol
st. The decoder works symmetrically so there is no need to transmit the model
parameters. It implies both encoder and decoder update their model identically.

When no preprocessing is done, st represents the byte at position t. Hence
there are Ns = 256 different symbol values from 0 to Ns − 1.

When preprocessing is employed, each symbol represents a sequence of input
bytes. There is a vocabulary of about Ns = 16000 symbols in our larger models.

Since the input data is presented only once to the neural network, our com-
pression results correspond to the training on a single epoch. Hence they show
the speed of convergence of the various models. This information is usually not
clearly shown in the published litterature and is useful to design better models or
gradient optimizers.

For easier replication of the results, the source code of our models is available1.

1https://bellard.org/nncp

1

2 Long Short-Term Memory Model

2.1 Model

The model consists in L layers of a LSTM cell. Each cell takes as input the output
of the corresponding cells of the previous layers and the previous symbol.

For each layer l = 1...L, the cell is defined as:

ft,l = sigm(LayerNorm(W f
l [ht−1,l;ht,0; ...;ht,l−1])) (1)

it,l = sigm(LayerNorm(W i
l [ht−1,l;ht,0; ...;ht,l−1])) (2)

ot,l = sigm(LayerNorm(W o
l [ht−1,l;ht,0; ...;ht,l−1])) (3)

jt,l = tanh(LayerNorm(W j
l [ht−1,l;ht,0; ...;ht,l−1])) (4)

ct,l = ft,l � ct−1,l + min(1− ft,l, it,l)� jt,l (5)

ht,l = ot,l � ct,l (6)

The input of the first layer is set such as

ht,0 = One(st−1)

The probabilies pt for the symbol at time t are computed as:

pt = softmax(W e[ht,1; ...;ht,L] + be)

W f
l , W i

l , W
o
l , W j

l , W e, be are learned parameters. ct,l and ht,l are vectors of
size Nc. h−1,l and c−1,l are set to the zero vector.

[a0; ...; an] represents the concatenation of the vectors a0 to an. � is the element-
wise multiplication.

y = One(k) is a vector of size Ns such as yi = 0 for i 6= k and yk = 1

y = LayerNorm(x) is defined as:

yi =
(xi − µ)

σ + ε
gi + bi with i = 0 . . . N − 1

µ =
1

N

N−1∑
i=0

xi

σ =

√√√√ 1

N

N−1∑
i=0

(xi − µ)2

ε = 10−5

where g and b are per instance learned parameters.

2

Model L Nc Ns Learning rate #Params #Params Memory
(total) (no embed) (bytes)

Small 3 90 256 0.007 542k 265k 12.1M
Large 5 352 16388 0.006 151M 36.3M 1.43G

Table 1: LSTM model parameters

2.2 Model specificities

The model is close to the one described in [1]. We modified the cell equation (5) to
use the cell output variant from [2]. This change is important because it ensures
the cell state is bounded unlike in the conventional LSTM. Moreover, we removed
the unnecessary tanh function in equation (6) because the cell state is already
clamped between −1 and 1.

We added layer normalization operations (LayerNorm) as suggested in [3].
They give a noticeable gain in performance.

No dropout is used because overfitting is unlikey to happen as the samples are
presented once to the model.

2.3 Training details

Regular truncated backpropagation is applied on successive segments of 20 timesteps.
The initial states ct,l and ht,l of the training segment are set to the last values of
the previous segment.

A small batch size B of 16 is used to have a fast training. Smaller batch sizes
give slightly better performance but the matrix operations are less efficient, so it
is a compromise.

We use the Adam optimizer [5] with β1 = 0, β2 = 0.9999 and 2 ε = 10−5. No
gradient clipping is done.

2.4 Model parameters

In table 1 we provide the parameters of our LSTM models. We listed the number
of parameters without the input embeddings because the input embeddings have
a negligible computing cost. The “Memory” column gives the total memory allo-
cated by our implementation to evaluate and train the model. The small model
has a similar complexity as lstm-compress [8]. It allows to compare the speed of
both implementations.

2In our implementation, ε is added to the running average before taking the square root.

3

3 Transformer Model

3.1 Model

Our model consists in L layers of a Transformer cell.
For each layer l = 1...L, for each attention head i = 1...Nh, for each backward

time step j = 0...M − 1:

qt,l,i = W q
l,iht,l−1 (7)

kt,l,i,j = W k
l,iht−j,l−1 (8)

vt,l,i,j = W v
l,iht−j,l−1 (9)

at,l,i,j = kTt,l,i,j(qt,l,i + ui) + wT
i,min(j,dmax)(qt,l,i + vi) (10)

rt,l,i = softmax(
at,l,i√
dkey

) (11)

ut,l,i =
M−1∑
k=0

rt,l,i,k.vt,l,i,k (12)

ot,l = LayerNorm(W p
l .[ut,l,1; ...;ut,l,Nh

] + ht,l−1) (13)

et,l = W g
l .ReLU(W f

l ot,l + bfl) (14)

ht,l = LayerNorm(et,l + ot,l) (15)

The input of the first layer is set such as:

ht,0 = W ei.One(st−1) .

The probabilies pt for the symbol at time t are computed as:

pt = softmax(W eoht,L + beo) .

ht,l and ot,l have a dimension of dmodel. qt,l,i and kt,l,i have a dimension of

dkey = dmodel

Nh
. vt,l,i has a dimension of dvalue = dkey. b

f
l has a dimension of dinner.

W q
l,i, W

k
l,i, W

v
l,i, ui, wi,j, vi, W

p
l , W f

l , bfl , W g
l , W ei, W eo, beo are learned param-

eters.

3.2 Model specificities

The model is close to the one defined in [4]. Learned relative positional embed-
dings are used instead of sinusoidal relative embeddings. We did not evaluate the
later, but learned positional embeddings are simpler and according to [6] give good

4

Model L dmodel dinner dmax Ns Learning #Params #Params Memory
rate (total) (no embed) (bytes)

Large 6 512 2048 64 16388 1e-4 → 3e-5 35.7M 27.3M 348M

Table 2: Transformer model parameters

results. We truncated the number of embeddings to dmax as increasing it does not
significantly increases the performance (but decreases the convergence speed).

Untied embeddings gave better results in our tests.
No dropout is used because overfitting is unlikely to happen as the samples are

presented once to the model.

3.3 Training

Truncated-like backpropagation is used on successive segments of 64 timesteps.
M = 128 is used, so that 64 additional timesteps contribute to the attention
computation (the ht,l values of these timesteps are reused as in [4]).

A small batch size B of 1 is used to have a faster training convergence.
We use the Adam optimizer[5] with β1 = 0, β2 = 0.9999 and ε = 10−5. No

gradient clipping is done.

3.4 Parameters

In table 2 we provide the parameters we tested. There are Nh = 8 attention heads.
The learning rate was linearly reduced. We summarize it by showing the initial
and final values.

4 The NC library

In order to ensure that the model is exactly the same in the encoder and in the
decoder, we developed a custom C library to implement the various operations
needed by the models. It only depends on basic IEEE 754-2008 32 bit floating point
operations (fused multiply-add, division, square root) with no reliance on external
libraries to ensure we get deterministic results on every CPU and operating system.

On x86 CPUs, the AVX2 + FMA instructions are mandatory in order to get
correct performance. The basic matrix operations were optimized to be fast with
small matrixes. It happens in our case because we use small batch sizes. General
purpose BLAS routines are much slower in these cases.

The library represents the forward evaluation of the model as a bytecode. The
bytecode to compute the gradient using backward propagation is automatically

5

computed from this bytecode. Liveness analysis and dead code removal is done to
reduce the memory usage and improve cache hits.

Since the decoder needs to evaluate the model incrementally at each timestep
(but still does the training on a whole segment as the encoder), the library automat-
ically converts the per-segment forward evaluation bytecode into a per-timestep
bytecode. The resulting per-timestep forward evaluation bytecode usually runs
slower because smaller matrix multiplications are involved.

5 Preprocessor

In order to improve the compression ratio and speed, we added a preprocessing
step.

5.1 CMIX preprocessor

For the small LSTM model, we reused the text preprocessor of CMIX [7] and
lstm-compress to have a meaningful comparison. This preprocessor replaces
words from a prebuilt dictionnary of about 45000 words with a unique code from
1 to 3 bytes. All uppercase letters are converted to lowercase ones with escape
codes.

5.2 Subword based preprocessor

The larger models use a preprocessor where each symbol represents a sequence of
bytes.

A first pass is done over the input data to convert all uppercase letters to
lowercase ones with escape codes as in the CMIX preprocessor. An escape code
followed by a space is added before a word when it is not preceded by a space.
These transforms help reducing the vocabulary size by having less variants for a
given word.

The second pass iteratively adds a new symbol to the vocabulary by concate-
nating two well chosen symbols. It is inspirated from the Byte Pair Encoding [11].
The symbols to concatenate are chosen by maximizing the expected zeroth order
entropy reduction. We also remove symbols when their frequency is below a given
threshold. The second pass makes no assumption about word separators, so it
works with any language.

For our models, we used a vocabulary of about 16000 symbols.

6

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0 5e+07 1e+08 1.5e+08 2e+08 2.5e+08

R
a
ti

o
 (

b
p
b
)

File o�set (symbol)

LSTM
Transformer

Figure 1: Compression ratio for the preprocessed enwik9. The ratio is computed
with a moving average over 5MB.

7

Program or model Compr. Size Ratio Compr. Speed
(bytes) (bpb) (kB/s)

gzip -9 36 445 248 2.92 17400
xz -9 [9] 24 865 244 1.99 1020
lstm-compress [8] 20 494 577 1.64 4.4
CMIX (v17) [7] 14 877 373 1.19 1.56 †
LSTM (small) 20 500 039 1.64 41.7
Transformer 18 126 936 1.45 1.79
LSTM (large) 16 924 569 1.35 2.75

Table 3: Compression results for enwik8. † indicates that the figures comes from
[10].

Program or model Compr. Size Ratio
(bytes) (bpb)

gzip -9 322 591 995 2.58
xz -9 [9] 197 331 816 1.58
CMIX (v17) [7] 116 394 271 0.93

Transformer 130 440 948 1.04
LSTM (large) 128 292 351 1.03

Table 4: Compression results for enwik9.

6 Results

The results in bytes and bpb (bits per input byte) for the various models are given
in table 3 and 4 for enwik8 (first 100 MB of the English version of Wikipedia)
and enwik9 (first GB). The results for two popular compression programs are
included. We show the results of CMIX [7], one of the best lossless compressor for
this benchmark.

Note that these results cannot be directly compared with state of the art lan-
guage modeling results such as [4] or [6] because:

• We do a single pass over the whole data (e.g. a single epoch).

• The result is the average bpb over the whole data instead of the last 5MB.

• The model parameters would have to be stored in the compressed file.

We did not take into account the size of the preprocessing dictionary in the
compressed results because it is only 60 kB long when compressed with xz [9],
which represents 0.005 bpb for enwik8. The size of the decompression programs
is also small regarding the compressed output, so it is not taken into account in
the results.

8

The compression speed is for a single core of a Core i5-4570 at 3.2 GHz except
for the large models where 4 Xeon E5-2640 v3 cores at 2.6 GHz were used. The
decompression speed is slower (1.5x slower for the LSTM model, 3x slower for the
Transformer model) because the models must be evaluated timestep per timestep
instead of on the whole training segment at once.

Regarding the speed, our results show that our implementation is much faster
than lstm-compress [8] with a similar model and gain. The speed improvement
comes from the more optimized matrix multiplication implementation and the
larger batch size (16 instead of 1).

Regarding the compression ratio, we still do not reach the performance of CMIX
(1.35 versus 1.19 bpb on enwik8) but we are among the best performers with a
model which is much simpler.

In all our experiments, the Transformer model has a worse performance than
the LSTM model although it gives the best performance in language modeling
benchmarks ([4], [6]). The figure 1 shows the variation of the compression ratio
with respect to the file offset for the large LSTM and Transformer models. It shows
that our Transformer model has a lower convergence speed than the LSTM model,
even if it ultimately performs similarly or better with a number of parameters in
the same range (we exclude the input embedding parameters from our comparison
because they have a negligible impact on the computation time). More experiments
are needed to see if it is possible to do better with the Transformer model.

7 Conclusion

We presented a practical implementation of an LSTM based lossless compressor.
Although it is slow, its description is simple and the memory consumption is
reasonable compared to compressors giving a similar compression ratio. It would
greatly benefit from a dedicated hardware implementation.

There are still many opportunities to improve the compression ratio, for exam-
ple by using larger models, tuning the hyperparameters, using a better gradient
optimizer or improving the preprocessor.

This experiment would not have been possible without our NC library which
ensures deterministic evaluation and training with good performances on standard
CPUs.

References

[1] Alex Graves, Generating sequences with recurrent neural networks. CoRR,
abs/1308.0850, 2013., arXiv preprint, arXiv:1308.0850, 2013.

9

[2] Gábor Melis, Chris Dyer, Phil Blunsom, On the State of the Art of Evaluation
in Neural Language Models, arXiv preprint, arXiv:1707.05589, 2017.

[3] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton, Layer normaliza-
tion, arXiv preprint, arXiv:1607.06450, 2016.

[4] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan
Salakhutdinov, Transformer-XL: Attentive Language Models Beyond a Fixed-
Length Context, arXiv preprint, arXiv:1901.02860, 2019.

[5] Diederik P. Kingma, Jimmy Ba, Adam: A Method for Stochastic Optimiza-
tion, arXiv preprint, arXiv:1412.6980, 2014.

[6] Rami Al-Rfou, Dokook Choe, Noah Constant, Mandy Guo, and Llion Jones,
Character-level language modeling with deeper self-attention, arXiv preprint,
arXiv:1808.04444, 2018.

[7] Byron Knoll, CMIX version 17, http://www.byronknoll.com/cmix.html.

[8] Byron Knoll, lstm-compress: data compression using LSTM, https://

github.com/byronknoll/lstm-compress.

[9] The .xz file format, https://tukaani.org/xz/format.html.

[10] Matt Mahoney, Large Text Compression Benchmark, http://www.

mattmahoney.net/dc/text.html.

[11] Sennrich, R., Haddow, B., and Birch, A., Neural machine trans- lation of rare
words with subword units, arXiv preprint, arXiv:1508.07909, 2015.

10

